The Physics of Flight 100 Years Since the Wright Brothers

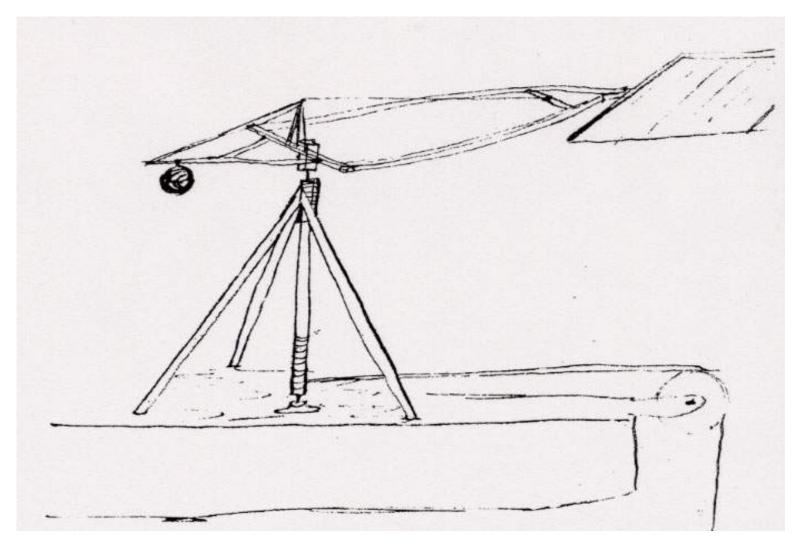
by

Donald A. Gurnett

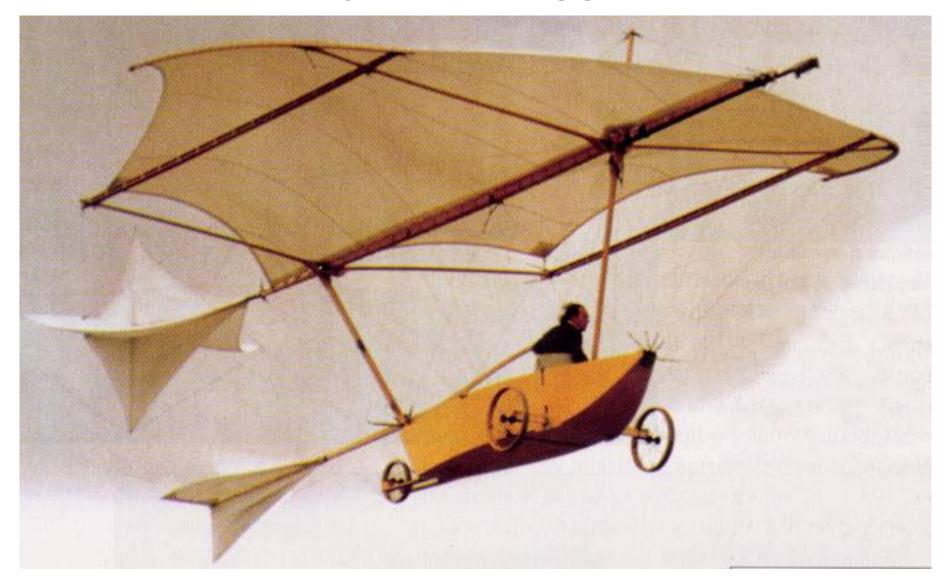
Colloquium presented in the Dept. of Physics and Astronomy, University of Iowa, Iowa City, Iowa, December 12, 2003.

Sir George Cayley, 1773-1857

- Showed lift is proportional to velocity squared and sin α , 1804
- Wrote a three-part paper on "Aerial Navigation," 1809-1810
- Designed the first successful glider

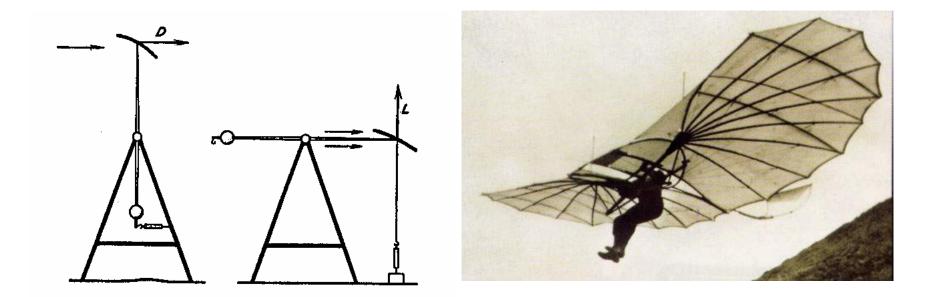


A replica of Caley's glider, flown by Derek Piggott, 1973



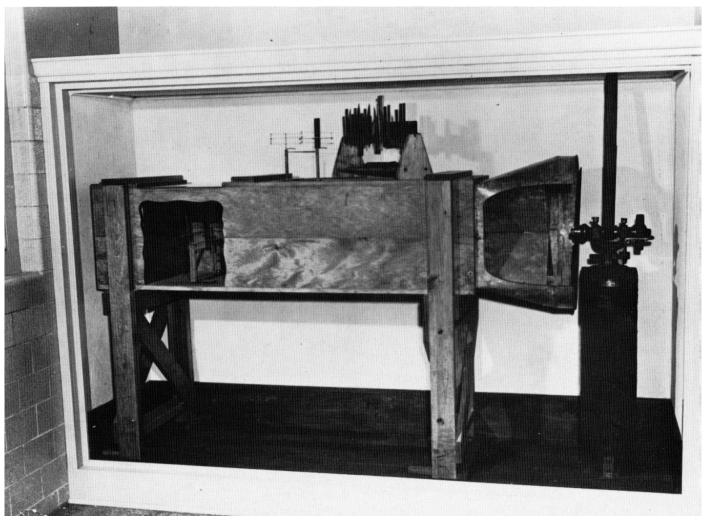
Otto Lilienthal (1848-1896)

- Measured the lift and drag of a wing
- Made over 2000 flights in a glider, some as far as 350m
- Wrote a book "The flight of birds as the basis for the art of flying," 1886.
- First person killed in an aircraft accident, 1896.

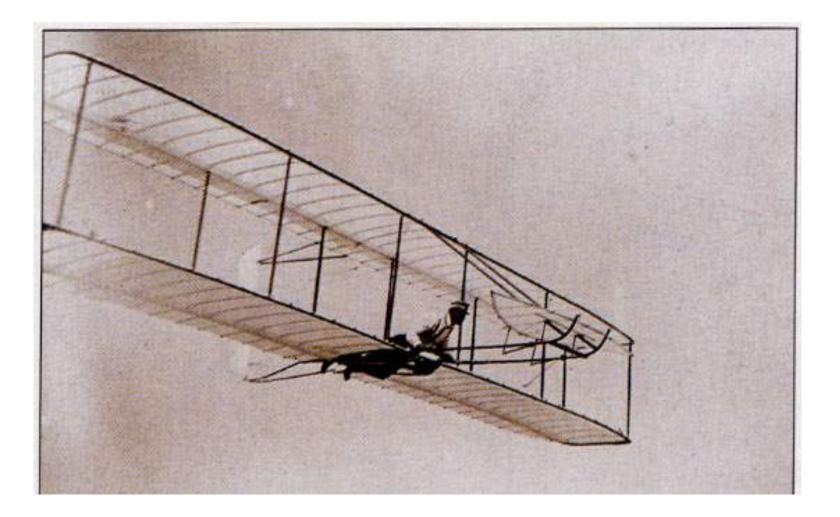


Orville and Wilbur Wright (1871-1948; 1867-1912)

- Knew of Cayley and Lilienthal's work
- Made one of the first wind tunnels, 1901
- Invented wing warping as a method of roll control,1902



Wright Brothers' 1902 Glider first full 3-axis controlled flight



Orville Wright, Dec. 17, 1903 first controlled powered flight

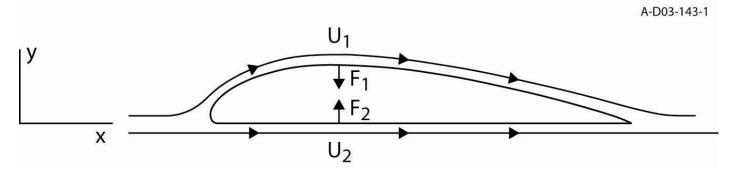
Status of Aerodynamic Theory in the Early 1900s

- All of the basic equations of fluid mechanics were known.
- However, no acceptable theory existed for the lift force on a wing.
- Worst than that, the existing theories predicted that the lift was exactly zero.

Bernoulli's Theorem and the Lift on a Wing

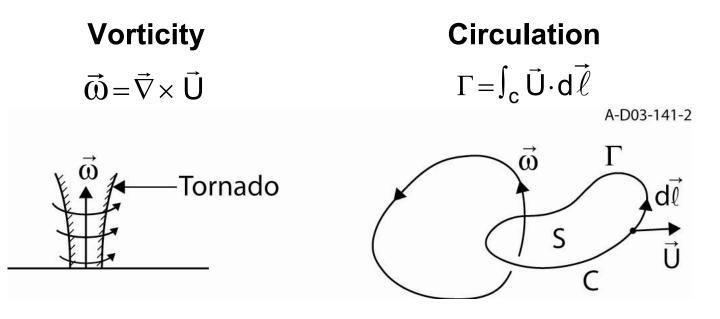
 $\frac{1}{2}\rho_m U^2 + p = \text{constant}$ $\rho_m = \text{mass density, } U = \text{velocity}$ p = F / A is the pressureF = force, A = Area

The usual argument:



Since $\ell_1 > \ell_2$ it follows that $U_1 > U_2$ so $p_1 < p_2$. Therefore, $F_2 > F_1$. (WRONG). One cannot assume that the stagnation point (where the streamlines separate) is exactly at the leading edge. One must solve for the entire flow pattern over the wing, which varies considerably with the angle of attack.

Some Key Concepts



Theorem: $\vec{\nabla} \cdot \vec{\omega} = \vec{\nabla} \cdot (\vec{\nabla} \times \vec{U}) = 0$ Vortex lines are continuous

Theorem:
$$\Gamma = \int_{c} \vec{U} \cdot d\vec{\ell} = \int_{s} \vec{\nabla} \times \vec{U} \cdot d\vec{A}$$

 $\Gamma = \int_{s} \vec{\omega} \cdot d\vec{A}$

Basic Equations and Assumptions

• Continuity equation

$$\frac{\partial \rho_m}{\partial t} + \vec{\nabla} \cdot (\rho_m \vec{U}) = 0$$

Navier Stokes equation

$$\rho_m \left[\frac{\partial \vec{U}}{\partial t} + (\vec{U} \cdot \vec{\nabla}) \vec{U} \right] = -\vec{\nabla} p + \rho_m \nu \left[\nabla^2 \vec{U} + \frac{1}{3} \vec{\nabla} (\vec{\nabla} \cdot \vec{U}) \right]$$

• The assumption of incompressibility

If ρ_m = constant, then

 $\vec{\nabla}\cdot\vec{U}\!=\!0$

• The vorticity equation

$$\frac{\partial \vec{\omega}}{\partial t} = \vec{\nabla} \times (\vec{U} \times \vec{\omega}) + \nu \nabla^2 \vec{\omega}$$
Convection Diffusion

Reynolds Number

$$R_{N} = \frac{|\text{ convection }|}{|\text{ diffusion }|} \square \frac{\text{UL}}{v}$$

Reynolds Number

Typical values (at sea level)

	U	L	R _N
Commercial Jet	600 mph	20 ft	1.1 x 10 ⁸
Light plane	100 mph	5 ft	4.7 x 10 ⁶
Glider	60 mph	3 ft	1.6 x 10 ⁶
Model airplane	40 mph	8 in	2.5 x 10 ⁵
Seagull	20 mph	4 in	6.2 x 10 ⁴
Butterfly	5 mph	1 in	3.9 x 10 ³
Housefly	5 mph	0.3 in	1.2 x 10 ²

Basic Equations and Assumptions (con't)

- The inviscid assumption, R_N □ 1 If v=0, then
 ρ_m [∂U/∂t + (U · ∇)U]= - ∇p (Euler's equation)

 Kelvin's theorem
- Kelvin's theorem

If ρ_m = constant and ν = 0, then

$$\Gamma = \int_{s} \vec{\omega} \cdot d\vec{A} = constant$$

• Velocity potentials

If $\Gamma = 0$ in the upstream flow, then $\vec{\omega} = \vec{\nabla} \times \vec{U} = 0$ at all points in the flow. It follows then that

$$\vec{\mathsf{U}} = \vec{\nabla} \Phi$$

• Laplace's equation

From the continuity equation, $\vec{\nabla} \cdot \vec{U} = 0$, one then has

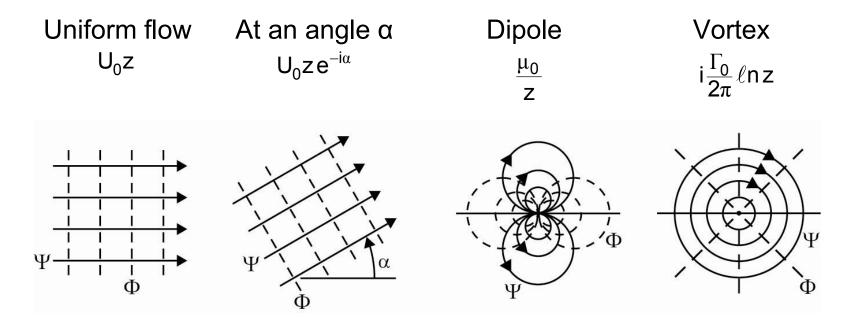
$$\nabla^2 \Phi = 0$$
, or $\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$

Complex Potentials

If z = x + iy, any analytic complex function $F(z) = \Phi(x, y) + i\Psi(x, y)$ provides a solution to Laplace's equation

 $\nabla^2 \Phi = 0$ and $\nabla^2 \Psi = 0$

Examples:

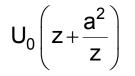


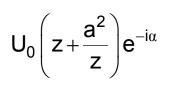
Flow Around a Cylinder

Horizontal flow

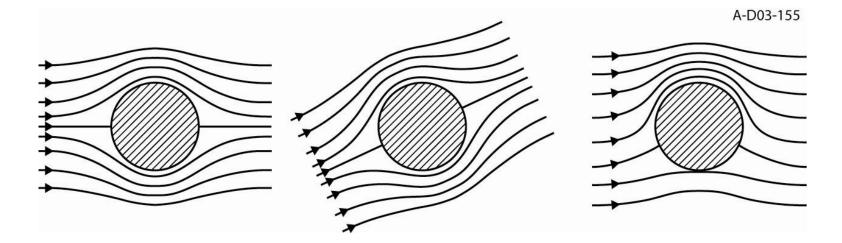
At an angle α

With circulation

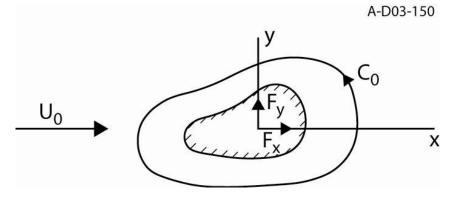




 $U_0\left(z+\frac{a^2}{z}\right)e^{-i\alpha} \qquad U_0\left(z+\frac{a^2}{z}\right)+\frac{i\Gamma_0}{2\pi}\ell n\left(\frac{z}{a}\right)$



The Blasius Force Equation



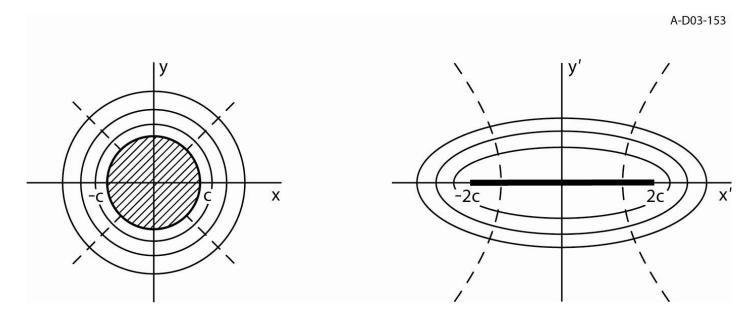
$$\begin{split} F_{x} - iF_{y} &= i\frac{\rho_{m}}{2}\int_{c}W^{2} dz, \\ \text{where } W(z) &= dF/dz = U_{x} - iU_{y} \text{ is the complex velocity.} \\ W(z) &= U_{0} + i\frac{\Gamma_{0}}{2\pi}\frac{1}{z} + \sum_{n}b_{n}\left(\frac{1}{z}\right)^{n} \\ \int_{c}W^{2} dz &= 2\pi i\sum \text{Res}(W^{2}) = -i2U_{0}\Gamma_{0} \\ F_{x} &= 0 \\ F_{y} &= \rho_{m}U_{0}\Gamma_{0} \end{split}$$

The Joukowski Transformation, 1910

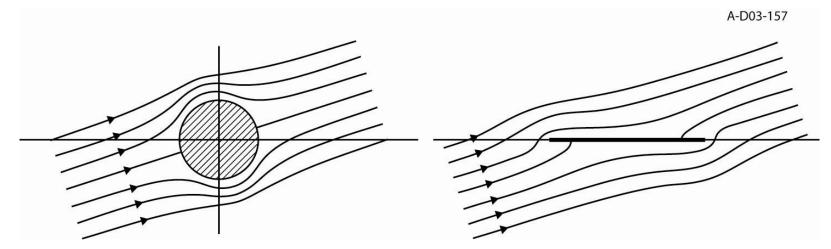
The Joukowski transformation

$$z'=z+\frac{c^2}{z}$$
 ,where $z' = x' + iy'$,

transforms a cylinder into a flat plate



Flow Around a Flat Plate Airfoil



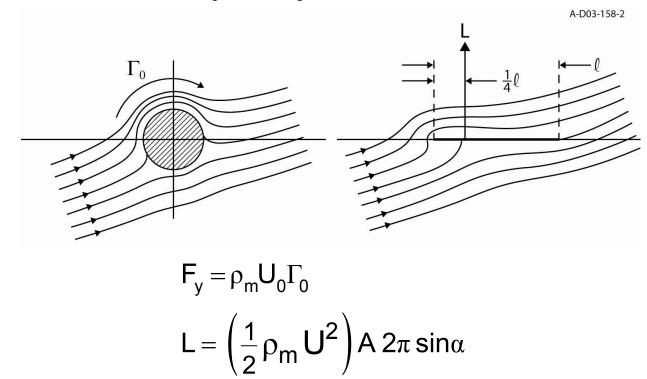
Since $\Gamma_0 = 0$, by the Blasius theorem $F_v = 0$.

The dilemma: Since the upstream vorticity is zero the circulation must be zero, so there can be no lift.

But a flat plate airfoil produces lift, so there must be circulation.

The Kutta-Joukowski Condition, 1910

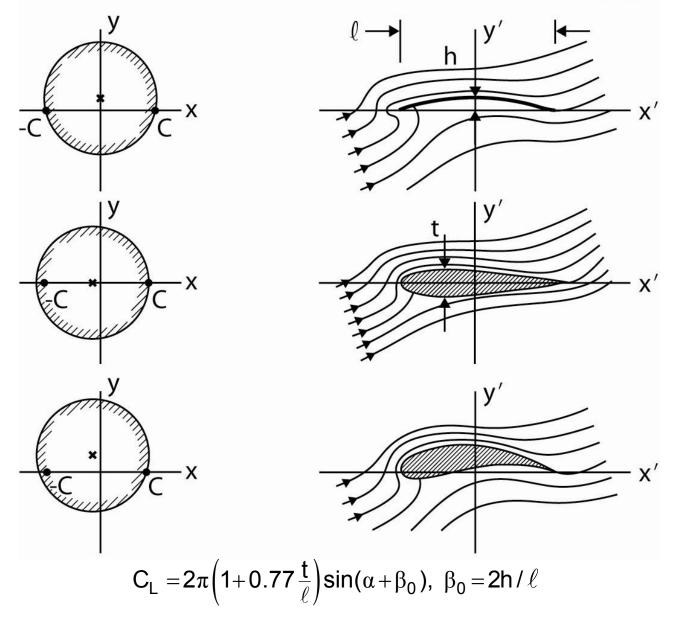
The flow must be smooth and continuous at the trailing edge. Requires a circulation, $\Gamma_0 = 4\pi U_0 a \sin \alpha$.



$$C_{L} = \frac{L}{\left(\frac{1}{2}\rho_{m}U_{0}^{2}\right)A} = 2\pi \sin\alpha$$

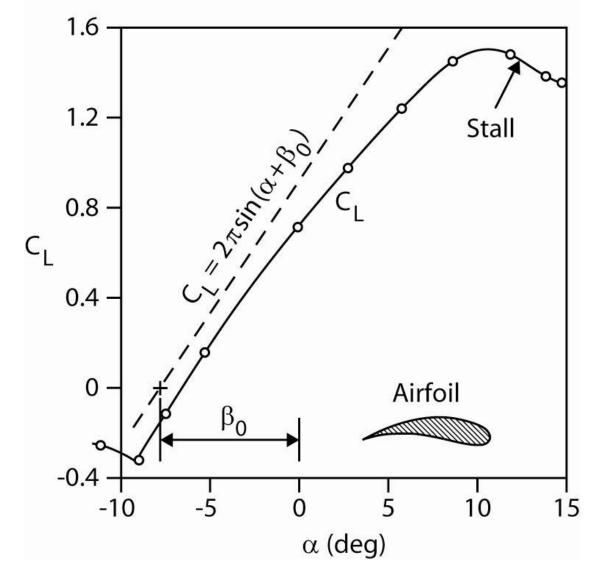
The Joukowski Family of Airfoils

A-D03-159-1



Comparison with Experimental Data

A-D03-160-2

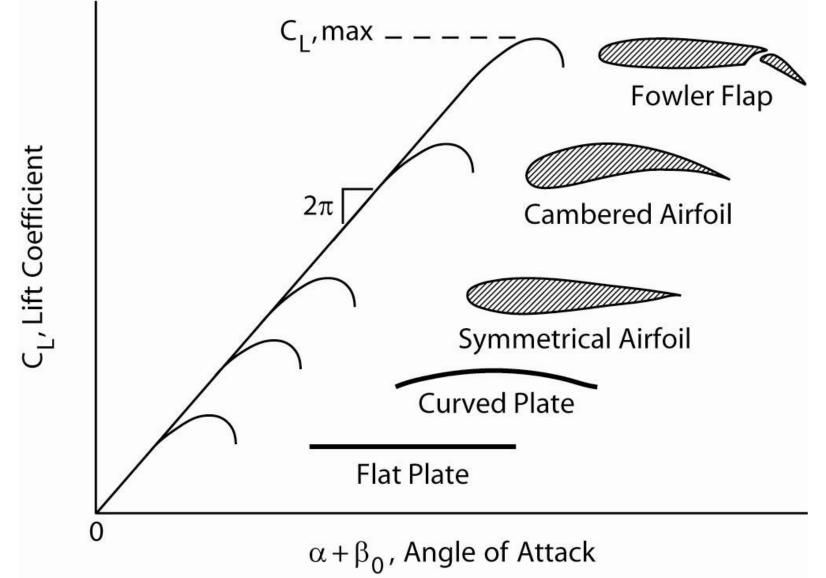


Wind Tunnel Observations

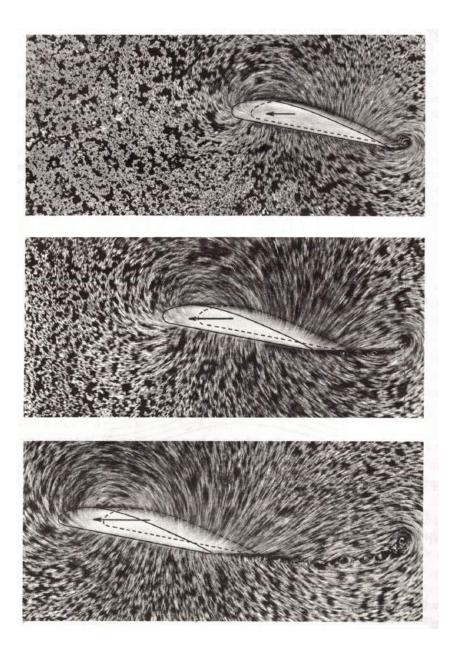
Kutta condition $\alpha = 5^{\circ}$ satisfied Slight flow $\alpha = 10^{\circ}$ separation Complete flow separation $\alpha = 15^{\circ}$ (stall)

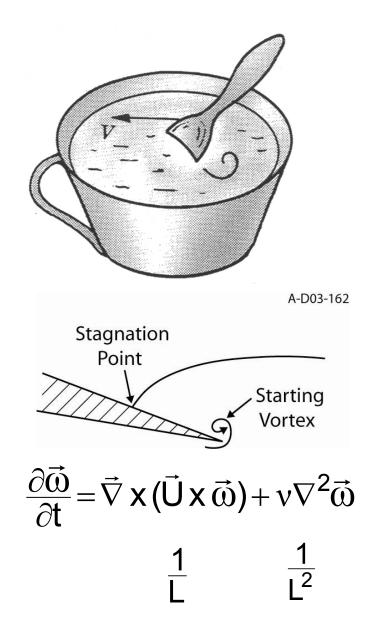
The Maximum Lift Coefficient

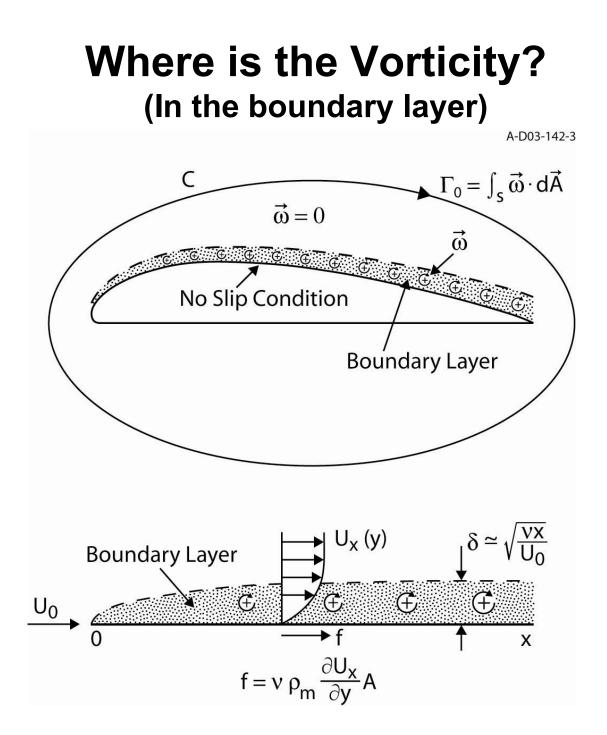
A-D03-172



Origin of the Circulation

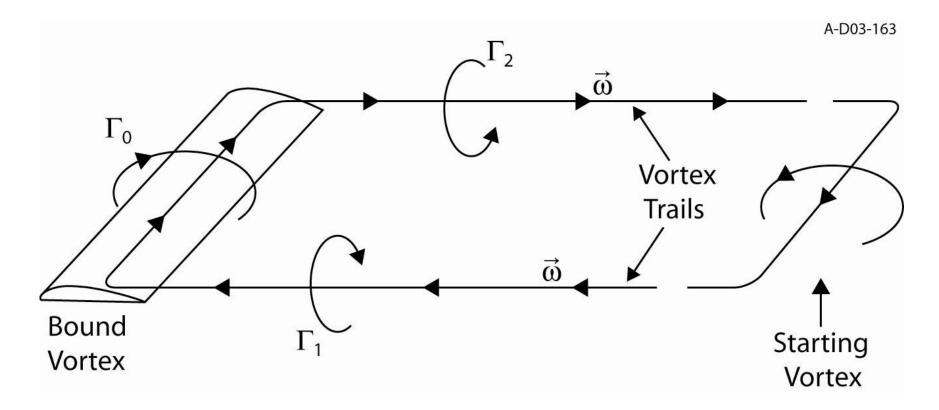






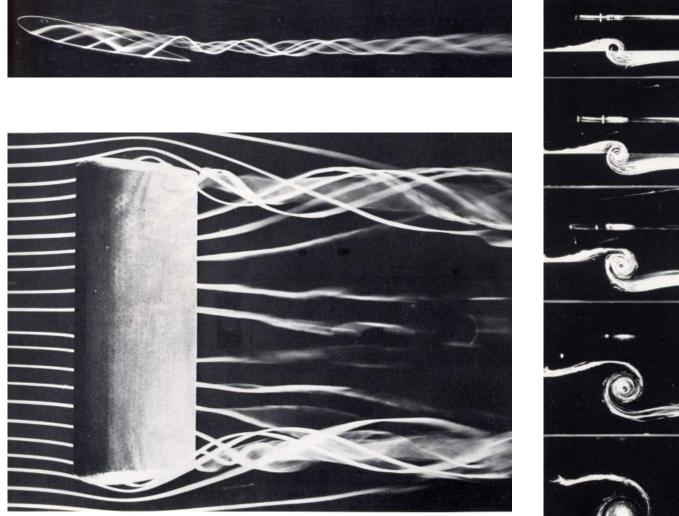
Finite Wing Span Effects

(continuity of $\vec{\omega}$)



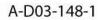
Note: $\Gamma_1 = \Gamma_2 = \Gamma_0$, vortex trails cannot be avoided.

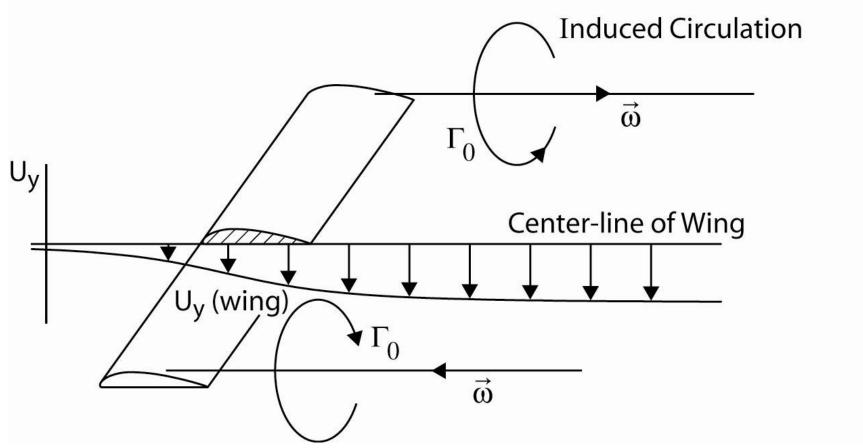
Vortex Trails



Vortex Trails

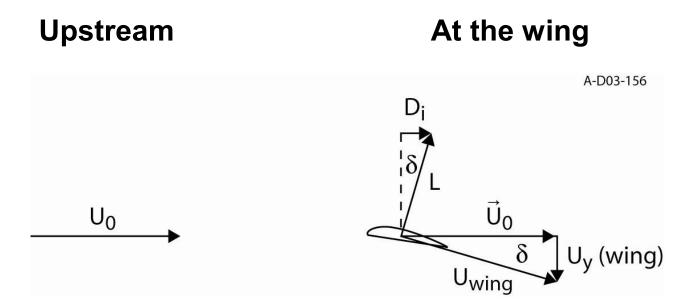
The Induced Downflow at the Wing





Note: The downflow velocity at the wing is exactly (1/2) of the downstream value (for a straight wing)

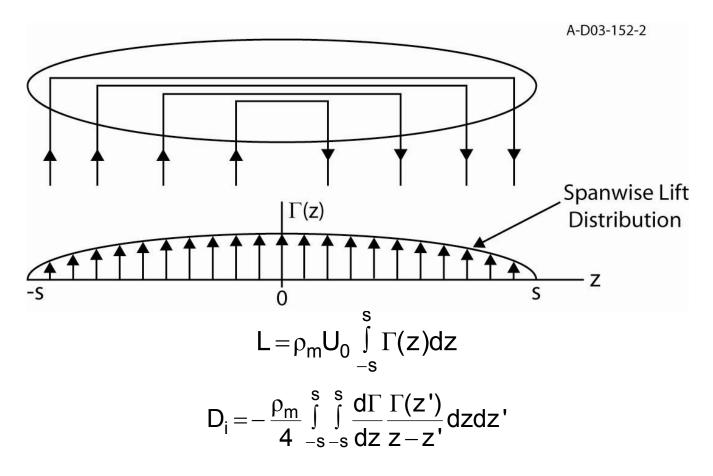
Induced Drag, D_i



 D_i = component of L in the U_0 direction

 $\delta \Box U_{y} / U_{0}$ = angle of the downflow at the wing

The Elliptical Wing Theorem Prandtl, 1918-1919



Problem: Minimize D_i , while holding L constant Answer: $\Gamma(z) = \Gamma_c \left[1 - (z/s)^2 \right]^{1/2}$, i.e., an ellipse

The Total Drag Force

Induced Drag

Viscous Drag

$$D_{i} = \frac{1}{4\pi} \left(\frac{A}{s^{2}}\right) \frac{L^{2}}{\left(\frac{1}{2}\rho_{m}U^{2}A\right)}$$

$$D_f = \frac{1}{2} \rho_m U^2 A C_{Df}$$

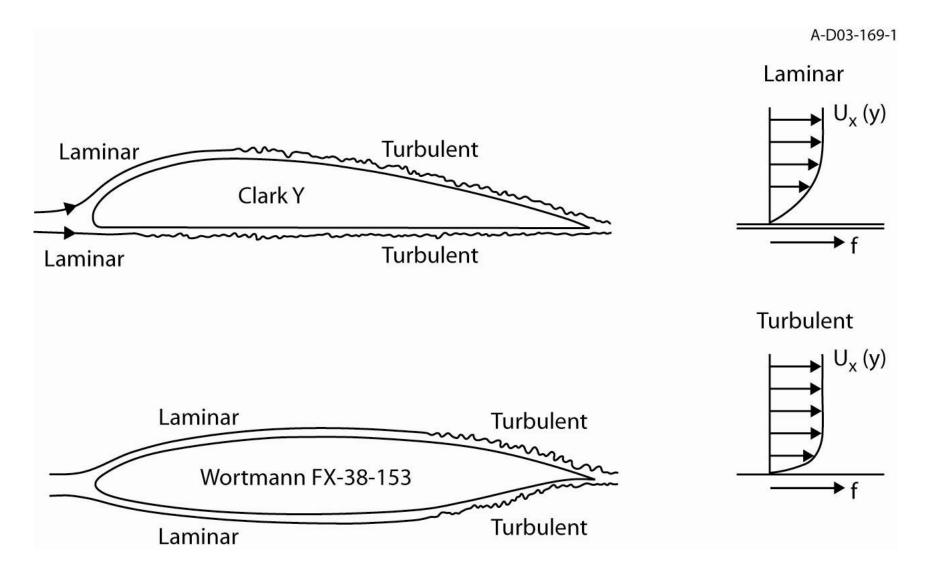
Note, $A/s^2 = 1/Aspect$ ratio



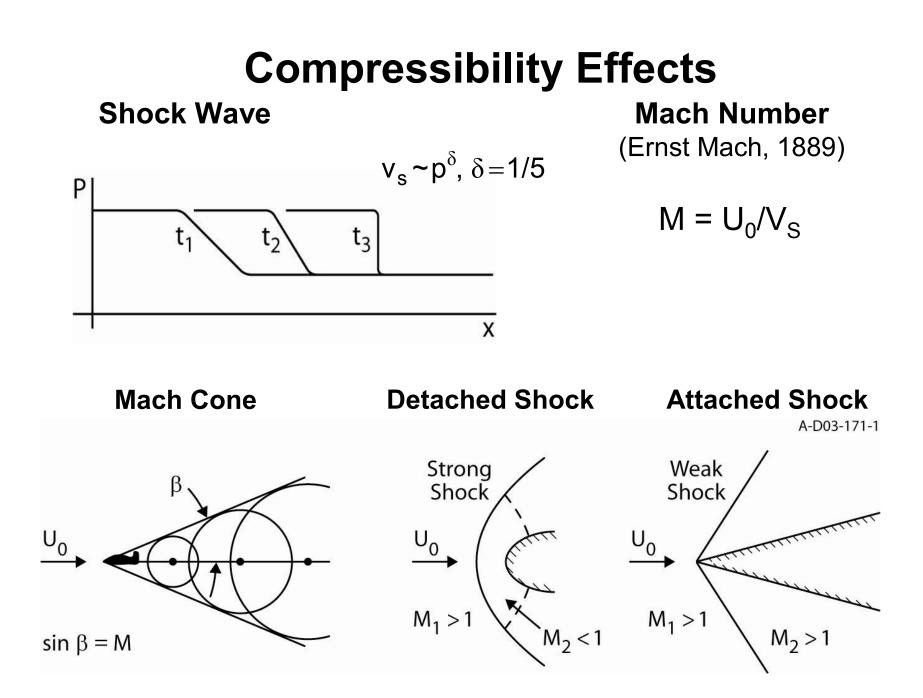
Some Elliptical Wings

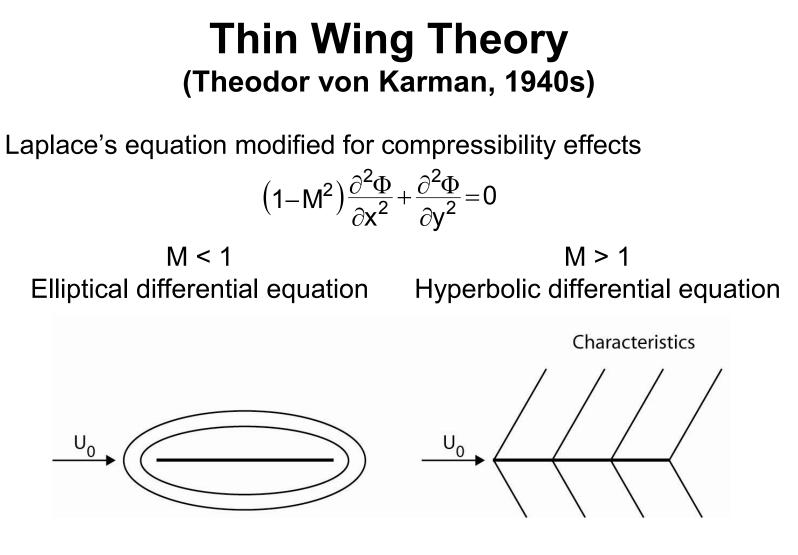
Winglets

Viscous Drag Reduction Laminar Flow Airfoils, NACA 1930s



First Use of a Laminar Flow Airfoil, P-51, 1940





Solution: transform to M = 0

$$x' = \frac{x}{\sqrt{1-M^2}}$$

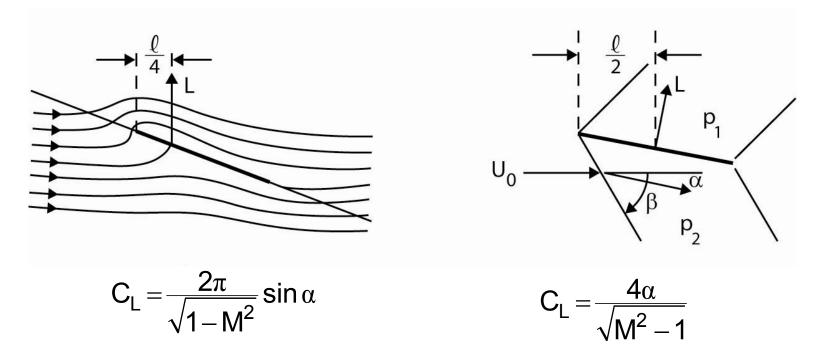
Solution: wave equation

$$\Phi \!=\! f\!\left(y \!-\! \frac{1}{\sqrt{M^2-1}} x\right)$$

The Flat Plate Airfoil

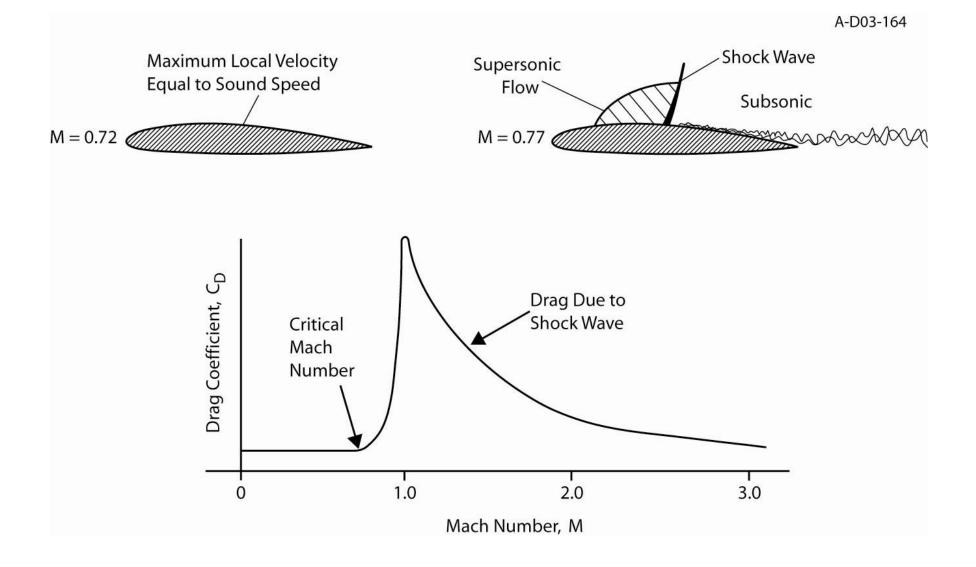
Subsonic (M < 1)

Supersonic (M > 1)



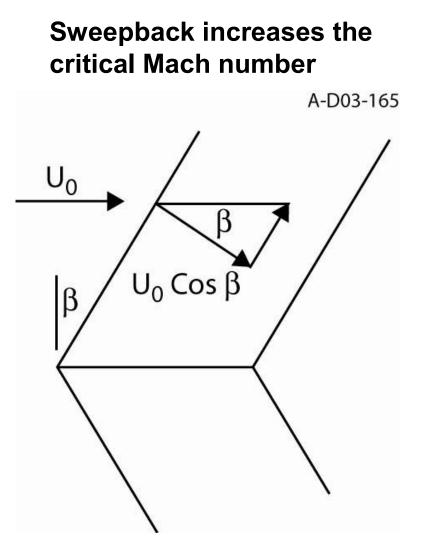
Note the change in the center of pressure, from $\ell/4$ to $\ell/2$.

The Critical Mach Number



A Shock at the Critical Mach Number

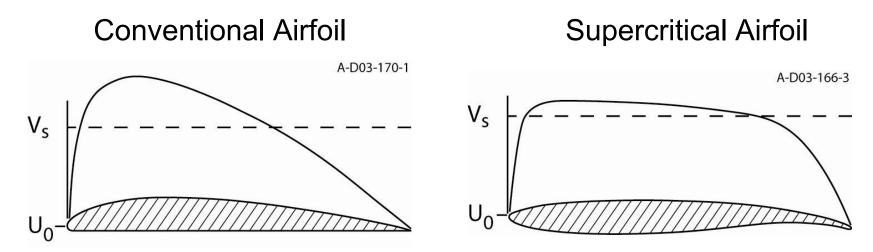
Sweepback (Busemann, 1935)



First use of sweepback Me-262, 1941

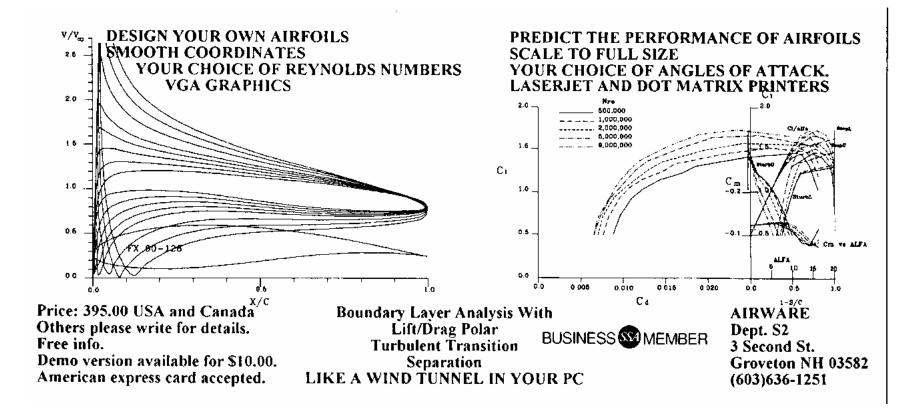
Supercritical Airfoil

(Whitcomb, 1971)



Boeing 777 ($M_c = 0.85$)

A Wind Tunnel in Your Computer



Course Advertisement

- Consider taking Mechanics of Continua, 29:211
- 12:15 to 1:30 p.m., T-Th, 618 Van Allen Hall
- Topics covered include the fundamental equations of fluid mechanics, incompressible and compressible flows in 2 and 3 dimensions, wave propagation, shock waves, instabilities, turbulence, and boundary layer physics
- Prerequisites: working knowledge of vector calculus, i.e., curl, divergence, gradient and associated identities